
ASH Architecture and Advanced Usage

Graham Wood, Uri Shaft, John Beresniewicz

Oracle America

The following is intended to outline our

general product direction. It is intended for

information purposes only, and may not be

incorporated into any contract. It is not a

commitment to deliver any material, code, or

functionality, and should not be relied upon in

making purchasing decisions.

The development, release, and timing of any

features or functionality described for

Oracle’s products remains at the sole

discretion of Oracle.

Agenda

• ASH Fundamentals and Architecture

• Estimating DB Time Using ASH

• The ASH Fix-up Mechanism

• Estimating Event Counts Using ASH

• Additional ASH Arcana

• Lessons Learned

Motivation for ASH in 10i

Performance diagnostics tool with:

• Always on (unlike SQL trace)

• History of database activity

• Fine grained detail

Other requirements:

• Very small performance overhead

• Uses no locks of any kind

• Works well even when system is overloaded

Active Session History (time based)

A sample of activity taken at regular intervals

t1

Session 1

Session 2

Session 3

Session Time Duration Activity SQL Object

1 t1 null CPU SQL1 null

2 t1 100ms I/O SQL2 EMP

3 t1 5ms I/O SQL1 EMP

3 t2 3sec Row lock SQL1 DEPT

t2 t3

ASH Architecture

Every
1 hour

or
out-of-space

AWR

Circular buffer
in SGA

(2MB per CPU)

DBA_HIST_ACTIVE_SESS_HISTORY

V$ACTIVE_SESSION_HISTORY

Session
state

objects

MMON Lite
(MMNL)

V$SESSION

V$SESSION_WAIT

Variable

length rows

Direct-path

INSERTS

Write
1 out of 10

samples

ASH Architecture

Readers go

unlatched

Writer goes
one direction

Every
1 hour

or
out-of-space

AWR

Circular buffer
in SGA

(2MB per CPU)

DBA_HIST_ACTIVE_SESS_HISTORY V$ACTIVE_SESSION_HISTORY

MMON Lite
(MMNL)

Session
state

objects

V$SESSION

V$SESSION_WAIT

Readers go the
opposite way

Indexe

d

on time

Indexe

d

on time

ASH Pros and Cons

PROS

• Supports the DB Time method of performance analysis

• Historically for large or systemic problems

• Recently or “now” (V$SESSION still available) for emergency

• Always available (modulo licensing restrictions)

• Minimal cost to server performance

CONS

• Queries become estimates

• We query a sample and not the full data set

• Difficult to form semantically meaningful queries

• Probability distribution of a query result matters

Database Time and Active Sessions

Database Time = Total time spent by sessions in the

database server actively working (on CPU) or actively

waiting (non-idle wait)

Active Sessions = The number of sessions active

(working or waiting) in the database server at a

particular time

Active Sessions is the rate of change of Database

Time over time, also referred to as load

ASH and Database Time

ä¶º i
S T DBT

DB Time is approximated by multiplying sampling interval by the

total count of the samples

DBT » T · (rows in ASH)

Each ASH sample represents 1 second of DB Time

Basic ASH Math

COUNT(*) = DB Time

GROUP BY ?

Active Sessions and DB Time

• The number of active sessions at any time is the rate

of change of the “DB Time function” at that time.

• DB Time is the integral of the Active Session function.

ñ=
1

0

t

t
ionsActiveSessDBtime

ionsActiveSesstDBtime =dd /

time t0 t1

Active Sessions and DB Time

Dt = 1 sec

Active sessions

DB Time

ASH DB Time Query (basic ASH math)

• What are the top SQL by database time in the last 5

minutes?

SELECT * FROM

 (SELECT NVL(SQL_ID,'NULL') as SQL_ID

 ,SUM(1) as DBtime_secs

 FROM V$ACTIVE_SESSION_HISTORY

 WHERE sample_time > SYSDATE - 5/24/60

 GROUP BY SQL_ID

 ORDER BY 2 DESC

)

 WHERE rownum < 6;

NOTE: SUM(:T) can be substituted for SUM(1) to account

for non-default sampling intervals

ASH Math: EM Top Activity

ASH Math: ASH Analytics

Multi-dimensional DB Time Analysis

18 Copyright © 2011, Oracle and/or its affiliates. All rights

reserved.

Insert Information Protection Policy Classification from Slide 8

Common Mistakes

ASH = Complete record of database activity

• SUM(time_waited) = total time spent in database

• COUNT(*) = total count of wait events

• AVG(time_waited) = average latency of waits

ASH = Random sample of wait events

• AVG(time_waited) = estimate of average wait latency

• Top SQL by SUM(time_waited) = Top SQL by time

spent in the server

Queries Over Samples

• ASH is a time sample of the true workload

• One can imagine multiple ASH mechanisms each

producing different results from the exact same true

workload

• ASH rows are random variables extracted from the true data

• It is a time sample: the probability an event is

sampled is proportional to the event duration

• A 10ms event is 10 times more likely to be in ASH than a 1ms

event

Query Results Are Estimates

• ASH does not contain all the data, just a sample

• Any aggregate over ASH data is a random variable

• It estimates something or is a sample of something.

• Any query over samples is an unbiased estimator of a

property value if the expected value of the query

equals that property value

Compare Estimated to Actual DB Time

Bad ASH Math

• SQL observed using 9 secs of CPU every 10 secs

The ASH ñFix-upò

• ASH columns may be unknown at sampling time

• TIME_WAITED: session is still waiting

• PLAN_HASH: session is still optimizing SQL

• GC events: event details unknown at event initiation

• Certain time model bit vector columns

• ASH “fixes up” data during subsequent sampling

• TIME_WAITED fixed up in first sample after event completes

• Long events: last sample gets fixed up time_waited (all others stay 0)

• Querying current ASH may return un-fixed rows

• Should not be a problem generally

ASH Fix-up 1: Sampling

Session State Objects

ASH Sampler

MMNL

ON CPU
ON CPU
ON CPU
WAITING
WAITING

IO WAIT

V$ASH

TIME_WAITED
PLAN_HASH

TIME_WAITED

Fix-up List

Post-wait callback

registered by session

ASH Fix-up 2: Fixing Up

Callback

Session State Objects

ASH Sampler

MMON

ON CPU
ON CPU
ON CPU

TIME_WAITED=n
WAITING

V$ASH

TIME_WAITED=n
PLAN_HASH

Fix-up List

Estimating Event Counts With ASH

 :T = ASH sampling interval

TIME_WAITED = length of sampled event

 N = Number of events the ASH sample

 represents

:T ~ TIME_WAITED * N

 OR

N ~ :T / TIME_WAITED

Why Event Count = :T / Time_Waited?

250 ms Sally

250 ms

250 ms

250 ms

250 ms

User1

User2

User3

User4

tN tN+:T :T elapsed time (1000 ms)

ASH sample time

Sally’s row in ASH estimates 1000/250 ms = 4 waits during time interval

ASH Event Count Query (1)

• Top 5 objects by User I/O requests last 15 minutes

SELECT W.*, O.object_name FROM

(SELECT current_obj #

 ,ROUND(SUM(100000/ time_waited)) as est_IOwaits

 ,SUM(1) as est_DBtime

 FROM V$ACTIVE_SESSION_HISTORY

 WHERE sample_time > SYSDATE - 15/24/60

 AND time_waited > 0

 AND event IN (ódb file sequential readô

 ,ôdb file scattered readô)

GROUP BY current_obj #

ORDER BY 2 DESC

) W

, DBA_OBJECTS O

WHERE o.object_id = W.current_obj #

 AND ROWNUM < 6;

Long Events

• Events that are longer than :T are always sampled

• No sampler “bias” for these

• Event may be sampled multiple times

• Only final (“fixed-up”) ASH row for long events has

TIME_WAITED > 0

• The event count of long events is known:

• 1 for each row with TIME_WAITED >= :T

• The DB Time estimate is still COUNT(*)

ASH Event Count Query (2)

• Top objects by I/O event counts adjusted for long

events

SELECT * FROM

(SELECT current_obj #

 ,ROUND(SUM(CASE WHEN time_waited >= 1000000 THEN 1

 ELSE 1000000 / time_waited

 END)) as est_IOwaits

 FROM V$ACTIVE_SESSION_HISTORY

 WHERE sample_time > SYSDATE - 15/24/60

 AND time_waited > 0

 AND wait_class = 'User I/O'

 GROUP BY current_obj #

 ORDER BY 2 DESC

)

WHERE ROWNUM < 6;

Estimating Event Latencies

1. We estimate total DB time on events

2. We can now estimate total event occurrences

3. Therefore, we can compute average latency

Est_avg_latency_ms = est_Dbtime_ms / est_waits

User I/O Events Ordered by Latency

SELECT event

 ,ROUND(est_DBtime_ms/est_waits,1)

 as est_avg_latency_ms

FROM

(SELECT event

 ,ROUND(SUM(GREATEST(1,1000000/time_waited)))

 as est_waits

 ,SUM(1000) as est_DBtime_ms

 FROM V$ACTIVE_SESSION_HISTORY

 WHERE sample_time > SYSDATE - 15/1440

 AND time_waited > 0

 AND wait_class = 'User I/O'

 GROUP BY event

)

ORDER BY 2 DESC;

• Note preferred syntax for computing event counts

DEMO?

Additional ASH Arcana

• ASH Samples “ON CPU”

• Challenges of SQL_ID tracking

• Sampling CPU-bound systems

• Current_OBJ# and when to use it

• Blocking session information

ON CPU and ASH

• ASH row status “ON CPU” derived, not observed

• Session is in a database call

• Session is NOT in a wait event (idle or non-idle)

• Un-instrumented waits => “ON CPU”

• These are bugs and should be rare, but have happened

• Session on run queue may be WAITING or ON CPU

• Depends on state prior to going onto run queue

Evolution of SQL_ID

•Objective is to get lowest level user level SQL

•Prior to 11.1.0.7 various schemes tried

•Varying levels of success, but each had problems

•11.1.0.7 and above: it is the currently executing SQL

• except recursions inside the server code, triggers

•PL/SQL has both top level and current level calls

•ENTRY_LEVEL and columns for applications that start with

generic PL/SQL and end up doing interesting things underneath

– need to find what the applications initially called.

Why does ASH work when the server

is CPU bound?

1. ASH sampler is very efficient, and does not lock

• Therefore, in almost all cases it takes a single CPU slice to

finish a full sample.

2. After a sample is done, the sampler computes next

scheduled sample time and sleeps until then

3. Upon scheduled wake-up, it waits for CPU (runq)

and samples again

• Thus, CPU bound samples are shifted by one runq but stay

about 1 per second

ASH Sampler and Run-queue

S_t0 S_t2 S_t1

Run queue Run queue

A_t1 A_t0

Run queue

A_t2

Sleep until next

time

Sleep until next

Sample Sample Sample

If run queue times are consistent sampling interval will be preserved but

sample times shifted

What Is CURRENT_OBJ#

It is the ID of the segment we operate on when ASH is

sampled.

However, this is only valid in specific wait events:

•I/O events on data blocks

•Cluster (global cache) events on data blocks

•Row Locks

•Table Locks

•Buffer busy (and associated RAC events)

DANGER: the column is not cleared when it is invalid.

Blocking Session

BLOCKING_SESSION_STATUS

BLOCKING_SESSION

BLOCKING_SESSION_SERIAL#

BLOCKING_INST_ID

Prior to 11.2:

Finding blocking session in most cases can create a lock/crash

Therefore, blocking session only in same instance, only for some cases

From 11.2:

We copy information from Hang Manager.

Therefore, events that are long enough (3 seconds in same instance, 10

seconds in RAC) get the hang information copied into ASH.

Lessons Learned

• ASH is a time-based and not event-based sample of

database activity

• ASH is an excellent representation of activity history

• How to estimate and rank DB Time spent over ASH

dimensions using basic ASH Math

• ASH estimates underlie key DB Time performance

analysis use cases exposed by EM

• The ASH fix-up is a critical (and unique) mechanism

• How to estimate event counts and latencies using

TIME_WAITED

DEMO?

