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Motivation for ASH in 10i 

Performance diagnostics tool with: 

• Always on (unlike SQL trace) 

• History of database activity 

• Fine grained detail 

 

Other requirements: 

• Very small performance overhead 

• Uses no locks of any kind 

• Works well even when system is overloaded 



Active Session History (time based) 

A sample of activity taken at regular intervals 

t1 

Session 1 

Session 2 

Session 3 

Session Time Duration Activity SQL Object 

1 t1 null CPU SQL1 null 

2 t1 100ms I/O SQL2 EMP 

3 t1 5ms I/O SQL1 EMP 

3 t2 3sec Row lock SQL1 DEPT 

t2 t3 
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ASH Pros and Cons 

PROS 

• Supports the DB Time method of performance analysis 

• Historically for large or systemic problems 

• Recently or “now” (V$SESSION still available) for emergency 

• Always available (modulo licensing restrictions) 

• Minimal cost to server performance 

 

CONS 

• Queries become estimates  

• We query a sample and not the full data set 

• Difficult to form semantically meaningful queries 

• Probability distribution of a query result matters 



Database Time and Active Sessions 

Database Time = Total time spent by sessions in the 

database server actively working (on CPU) or actively 

waiting (non-idle wait) 

 

Active Sessions = The number of sessions active 

(working or waiting) in the database server at a 

particular time 

 

Active Sessions is the rate of change of Database 

Time over time, also referred to as load 



ASH and Database Time 

ä¶º i
S T  DBT

DB Time is approximated by multiplying sampling interval by the 

total count of the samples 

DBT »  T ·  (rows in ASH)

Each ASH sample represents 1 second of DB Time 



Basic ASH Math 

COUNT(*) = DB Time  

GROUP BY ? 



Active Sessions and DB Time 

• The number of active sessions at any time is the rate 

of change of the “DB Time function” at that time. 

 

 

 

 

• DB Time is the integral of the Active Session function. 
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Active Sessions and DB Time 
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ASH DB Time Query (basic ASH math) 

• What are the top SQL by database time in the last 5 

minutes? 

 
SELECT * FROM 

  (SELECT NVL(SQL_ID,'NULL') as SQL_ID  

         ,SUM(1)             as DBtime_secs   

     FROM V$ACTIVE_SESSION_HISTORY 

    WHERE sample_time  > SYSDATE -  5/24/60  

    GROUP BY SQL_ID 

    ORDER BY 2 DESC 

  )  

  WHERE rownum < 6;  

NOTE: SUM(:T) can be substituted for SUM(1) to account 

for non-default sampling intervals 



ASH Math: EM Top Activity  



ASH Math: ASH Analytics 



Multi-dimensional DB Time Analysis 
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Common Mistakes 

ASH = Complete record of database activity 

• SUM(time_waited) = total time spent in database 

• COUNT(*) = total count of wait events 

• AVG(time_waited) = average latency of waits 

 

ASH = Random sample of wait events 

• AVG(time_waited) = estimate of average wait latency 

• Top SQL by SUM(time_waited) = Top SQL by time 

spent in the server 



Queries Over Samples 

• ASH is a time sample of the true workload 

 

• One can imagine multiple ASH mechanisms each 

producing different results from the exact same true 

workload 

• ASH rows are random variables extracted from the true data 

 

• It is a time sample: the probability an event is 

sampled is proportional to the event duration  

• A 10ms event is 10 times more likely to be in ASH than a 1ms 

event 

 



Query Results Are Estimates 

• ASH does not contain all the data, just a sample 

 

• Any aggregate over ASH data is a random variable 

• It estimates something or is a sample of something.  

 

• Any query over samples is an unbiased estimator of a 

property value if the expected value of the query 

equals that property value 



Compare Estimated to Actual DB Time 



Bad ASH Math 

• SQL observed using 9 secs of CPU every 10 secs 



The ASH ñFix-upò 

• ASH columns may be unknown at sampling time 

• TIME_WAITED: session is still waiting 

• PLAN_HASH: session is still optimizing SQL 

• GC events: event details unknown at event initiation 

• Certain time model bit vector columns 

 

• ASH “fixes up” data during subsequent sampling 

• TIME_WAITED fixed up in first sample after event completes 

• Long events: last sample gets fixed up time_waited (all others stay 0) 

 

• Querying current ASH may return un-fixed rows 

• Should not be a problem generally 



ASH Fix-up 1: Sampling 
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ASH Fix-up 2: Fixing Up 

Callback  

Session State Objects 
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Estimating Event Counts With ASH 

                     :T = ASH sampling interval 

TIME_WAITED = length of sampled event 

                      N = Number of events the ASH sample  

   represents 

 

:T ~ TIME_WAITED * N 

  OR 

N ~ :T / TIME_WAITED 



Why Event Count = :T / Time_Waited? 

250 ms Sally 

250 ms 

250 ms 

250 ms 

250 ms 

User1 

User2 

User3 

User4 

tN tN+:T :T elapsed time (1000 ms) 

ASH sample time 

Sally’s row in ASH estimates 1000/250 ms = 4 waits during time interval 



ASH Event Count Query (1) 

• Top 5 objects by User I/O requests last 15 minutes 

SELECT W.*, O.object_name  FROM 

(SELECT current_obj # 

       ,ROUND(SUM(100000/ time_waited ))  as est_IOwaits  

       ,SUM(1)                          as est_DBtime  

  FROM  V$ACTIVE_SESSION_HISTORY 

 WHERE sample_time  > SYSDATE -  15/24/60  

   AND  time_waited  > 0  

   AND  event IN (ódb file sequential readô  

                 ,ôdb file scattered readô) 

GROUP BY current_obj # 

ORDER BY 2 DESC 

)  W  

, DBA_OBJECTS O  

WHERE o.object_id  = W.current_obj #  

  AND ROWNUM < 6; 



Long Events 

• Events that are longer than :T are always sampled 

• No sampler “bias” for these  

• Event may be sampled multiple times 

 

• Only final (“fixed-up”) ASH row for long events has  

TIME_WAITED > 0 

 

• The event count of long events is known: 

• 1 for each row with TIME_WAITED >= :T 

 

• The DB Time estimate is still COUNT(*) 



ASH Event Count Query (2) 

• Top objects by I/O event counts adjusted for long 

events 

SELECT * FROM 

(SELECT current_obj #  

      ,ROUND(SUM(CASE WHEN time_waited  >= 1000000 THEN 1  

                 ELSE 1000000 / time_waited  

             END))               as est_IOwaits  

  FROM V$ACTIVE_SESSION_HISTORY 

 WHERE sample_time  > SYSDATE -  15/24/60  

   AND time_waited  > 0  

   AND wait_class  = 'User I/O'  

 GROUP BY current_obj # 

 ORDER BY 2 DESC 

)  

WHERE ROWNUM < 6; 



Estimating Event Latencies 

1. We estimate total DB time on events 

 

2. We can now estimate total event occurrences 

 

3. Therefore, we can compute average latency 

 

Est_avg_latency_ms = est_Dbtime_ms / est_waits  



User I/O Events Ordered by Latency 

SELECT event  

      ,ROUND(est_DBtime_ms/est_waits,1)    

                        as est_avg_latency_ms  

FROM 

(SELECT event  

       ,ROUND(SUM(GREATEST(1,1000000/time_waited)))  

                            as est_waits  

       ,SUM(1000)           as est_DBtime_ms  

   FROM V$ACTIVE_SESSION_HISTORY 

  WHERE sample_time > SYSDATE -  15/1440  

    AND time_waited > 0  

    AND wait_class = 'User I/O'  

 GROUP BY event  

)  

ORDER BY 2 DESC;  

• Note preferred syntax for computing event counts 



DEMO? 



Additional ASH Arcana 

• ASH Samples “ON CPU” 

 

• Challenges of SQL_ID tracking 

 

•  Sampling CPU-bound systems 

 

• Current_OBJ# and when to use it 

 

• Blocking session information 



ON CPU and ASH 

• ASH row status “ON CPU” derived, not observed 

• Session is in a database call 

• Session is NOT in a wait event (idle or non-idle) 

 

• Un-instrumented waits => “ON CPU” 

• These are bugs and should be rare, but have happened 

 

• Session on run queue may be WAITING or ON CPU 

• Depends on state prior to going onto run queue 



Evolution of SQL_ID 

•Objective is to get lowest level user level SQL 

 

•Prior to 11.1.0.7 various schemes tried 

•Varying levels of success, but each had problems 

•11.1.0.7 and above: it is the currently executing SQL 

• except recursions inside the server code, triggers 

•PL/SQL has both top level and current level calls 

•ENTRY_LEVEL and columns for applications that start with 

generic PL/SQL and end up doing interesting things underneath 

– need to find what the applications initially called. 



Why does ASH work when the server 

is CPU bound? 

1. ASH sampler is very efficient, and does not lock 

• Therefore, in almost all cases it takes a single CPU slice to 

finish a full sample.  

 

2. After a sample is done, the sampler computes next 

scheduled sample time and sleeps until then 

 

3. Upon scheduled wake-up, it waits for CPU (runq) 

and samples again 

• Thus, CPU bound samples are shifted by one runq but stay 

about 1 per second 



ASH Sampler and Run-queue 

S_t0 S_t2 S_t1 

Run queue Run queue 

A_t1 A_t0 

Run queue 

A_t2 

Sleep until next 
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Sample Sample Sample 

If run queue times are consistent sampling interval will be preserved but 

sample times shifted 



What Is CURRENT_OBJ# 

It is the ID of the segment we operate on when ASH is 

sampled. 

However, this is only valid in specific wait events: 

•I/O events on data blocks 

•Cluster (global cache) events on data blocks 

•Row Locks 

•Table Locks 

•Buffer busy (and associated RAC events) 

 

DANGER: the column is not cleared when it is invalid. 



Blocking Session 

BLOCKING_SESSION_STATUS            

BLOCKING_SESSION 

BLOCKING_SESSION_SERIAL# 

BLOCKING_INST_ID 

 

Prior to 11.2:  

Finding blocking session in most cases can create a lock/crash 

Therefore, blocking session only in same instance, only for some cases 

 

From 11.2: 

We copy information from Hang Manager. 

Therefore, events that are long enough (3 seconds in same instance, 10 

seconds in RAC) get the hang information copied into ASH. 



Lessons Learned 

• ASH is a time-based and not event-based sample of 

database activity 

• ASH is  an excellent representation of activity history 

• How to estimate and rank DB Time spent over ASH 

dimensions using basic ASH Math 

• ASH estimates underlie key DB Time performance 

analysis use cases exposed by EM 

• The ASH fix-up is a critical (and unique) mechanism 

• How to estimate event counts and latencies using 

TIME_WAITED 
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